
COS Development
Release 1.0

Sep 27, 2017

Contents

1 Process 3

2 Style Guides 9

3 OSF Development 21

4 Getting Help 55

5 Contributing To These Docs 57

i

ii

COS Development, Release 1.0

Welcome to the COS development documentation page. Here you’ll find style guides and best practices for working
on COS projects.

NOTE: These docs are a work in progress. Expect them to change often!

Contents 1

COS Development, Release 1.0

2 Contents

CHAPTER 1

Process

1.1 Version Control

1.1.1 General Guidelines

We use git for version control. Some general guidelines:

• Use Vincent Driessen’s Successful Git Branching Model (aka git-flow)

• In your feature branches, pull from develop frequently.

• DO NOT merge develop into hotfix branches.

• Follow the Git style guide.

• Package and app maintainers: Use semantic versioning.

1.1.2 Useful Tools

• SourceTree - Mac OS X; GUI.

• gitflow - Cross-platform; CLI.

• hub - GitHub integration with the git CLI. Very useful for checking out pull requests.

1.1.3 An Important Note About Hotfixes

Many git-flow tools will try to force you to merge hotfix branches into master before publishing code to a hosting
service (e.g. Github). Do not do this. Just push your hotfix branch on its own and send a pull request.

Push a new hotfix branch up to origin
$ git push -u origin hotfix/nav-header-size

3

http://nvie.com/posts/a-successful-git-branching-model/
http://semver.org
http://www.sourcetreeapp.com/
https://github.com/nvie/gitflow
https://github.com/github/hub

COS Development, Release 1.0

1.1.4 Package and App Maintainers: Release How-to

Hotfix releases

• Once a hotfix PR has been checked out locally and code review is complete, rename the hotfix branch with the
incremented PATCH number.

hotfix/fix-serialization-bug is currently checked out
rename with version number
$ git branch -m hotfix/0.16.3

• Finish the hotfix with git-flow.

$ git flow hotfix finish 0.16.3

• When prompted to add a tag message, write a brief (1-2 sentence) description of the hotfix.

Note: You can also use the hotfix invoke task to automatically rename the current hotfix branch and finish it.

$ invoke hotfix --finish

• Push develop and master. Push tags.

$ git push origin develop
$ git push origin master
$ git push --tags

• Once Travis tests pass, deploy to production and staging.

Feature releases

• Once develop is ready for release, start a release branch with git-flow.

$ git flow release start 0.17.0

• Update the CHANGELOG and bump the version where necessary. Commit changes.

• Finish the release with git-flow

$ git flow release finish 0.17.0

• If prompted to add a tag message, write See CHANGELOG.

• Push develop and master. Push tags.

$ git push origin develop
$ git push origin master
$ git push --tags

• Once Travis tests pass, deploy to production and staging.

1.2 Testing

4 Chapter 1. Process

COS Development, Release 1.0

Note: The below examples are in Python, but the concepts apply to testing in any language.

See also:

Looking for OSF-specific testing guidelines? See the Testing the OSF page.

1.2.1 General Testing Guidelines

• Use long, descriptive names. This often obviates the need for doctrings in test methods. This also makes it
easier to locate tests that fail.

• Tests should be isolated. Don’t interact with a real database or network. Use a separate test database that gets
torn down or use mock objects.

• Prefer factories to fixtures.

• Never let incomplete tests pass, else you run the risk of forgetting about them. Instead, add a placeholder like
assert False, "TODO: finish me". If you are stubbing out a test that will be written in the future,
use the @unittest.skip() decorator.

• Strive for 100% code coverage, but don’t get obsess over coverage scores.

• When testing the contents of a dictionary, test the keys individually.

Yes
assert_equal(result['foo'], 42)
assert_equal(result['bar'], 24)

No
assert_equal(result, {'foo': 42, 'bar': 24})

1.2.2 Unit Tests

• Focus on one tiny bit of functionality.

• Should be fast, but a slow test is better than no test.

• It often makes sense to have one testcase class for a single class or model.

import unittest
import factories

class PersonTest(unittest.TestCase):
def setUp(self):

self.person = factories.PersonFactory()

def test_has_age_in_dog_years(self):
assert self.person.dog_years == self.person.age / 7

1.2.3 Functional Tests

Functional tests are higher level tests that are closer to how an end-user would interact with your application. They are
typically used for web and GUI applications.

• Write tests as scenarios. Testcase and test method names should read like a scenario description.

1.2. Testing 5

https://github.com/rbarrois/factory_boy

COS Development, Release 1.0

• Use comments to write out stories, before writing the test code.

class TestAUser(unittest.TestCase):
def test_can_write_a_blog_post(self):

Goes to the her dashboard
...
Clicks "New Post"
...
Fills out the post form
...
Clicks "Submit"
...
Can see the new post
...

Notice how the testcase and test method read together like “Test A User can write a blog post”.

1.2.4 Supporting Libraries

Python

• nose: Extends Python’s unittest. Includes a test runner and various utilities.

• pytest: A powerful test runner and library for writing automated tests.

• factory-boy: Utility library for creating test objects. Replaces fixtures with “factories”.

• mock: Allows you to mock and patch objects for testing purposes.

• webtest / webtest-plus : Provides a TestApp with which to send test requests and make assertions about the
responses.

• faker : A fake data generator.

Javascript

• Karma: Test runner.

• Mocha: Test framework/interface.

• Chai: Assertion library.

• Sinon: Test spies and mocks.

1.3 Sending a Pull Request

Use the following checklist to make sure your pull request can be reviewed and merged as efficiently as possible:

• For projects that use git-flow (such as the OSF): Feature branches should request to the develop branch.
Hotfix branches should request to the master branch.

• New features must be tested appropriately (views, functional, and/or unit tests). Fixes should include regression
tests.

• Your code must be sufficiently documented. Add docstrings to new classes, functions, and methods.

• Your code must be passing on TravisCI.

6 Chapter 1. Process

https://nose.readthedocs.org/en/latest/
http://pytest.org/latest/contents.html
https://github.com/rbarrois/factory_boy
http://www.voidspace.org.uk/python/mock/
http://webtest.readthedocs.org/en/latest/
https://github.com/sloria/webtest-plus
https://github.com/joke2k/faker
https://karma-runner.github.io/
http://mochajs.org/
http://chaijs.com/
http://sinonjs.org/

COS Development, Release 1.0

• On Github, rename your PR title with the prefix “[feature]”, “[feature fix]” (fixes to develop), or “[hotfix]”, as
appropriate.

• If you are sending the PR for code review only and not for merge, add the “[WIP]” prefix to the PR’s title.

• Write a descriptive Pull Request description (See sample below). Ideally, it should communicate:

– Purpose

* The overall philosophy behind the changes you’ve made, so that, if there are questions as to
whether an implementation detail was appropriate, this can be consulted before talking with
the developer.

* Which Github issue the PR addresses, if applicable.

– Changes.

* The details of the implementation as you intended them to be. If you did front-end changes,
add screenshots here.

– Side effects.

* Potential concerns, esp. regarding security, privacy, and provenance, which will requires extra
care during review.

• Once your PR is ready, ask for code review on Flowdock.

Note: Make sure to follow the Git style guidelines.

1.4 Sample Pull Request Description

1.4.1 Purpose

Currently, the only way to add projects to your Dashboard’s Project Organizer is from within the project organizer.
There are smart folders with your projects and registrations, and you can search for projects from within the info widget
to add to folders, but if you are elsewhere in the OSF, it’s a laborious process to get the project into the Organizer. This
PR allows you to be on a project and add the current project to the Project Organizer.

Closes Issue https://github.com/CenterForOpenScience/osf.io/issues/1186

1.4.2 Changes

Puts a button on the project header that adds the current project to the Dashboard folder of the user’s Project Organizer.
Disabled if the user is not logged in, if the folder is already in the dashboard folder of the user’s project organizer, or
if the user doesn’t have permissions to view.

1.4.3 Side Effects

Also fixes a minor issue with the watch button count being slow to update.

1.5 Code Review

Guidelines for our code review process.

1.4. Sample Pull Request Description 7

https://github.com/CenterForOpenScience/osf.io/issues/1186

COS Development, Release 1.0

1.5.1 Everyone

• Ask for clarification. (“I didn’t understand this comment. Can you clarify?”)

• Talk in person if there are too many “I didn’t understand” comments.

1.5.2 Having Your Code Reviewed

Before sending a pull request for code review, make sure you have met the PR guidelines.

• It may be difficult not to perceive code review as personal criticism, but, keep in mind, it is a review of the code,
not the person. We can all learn from eachother, and code reviews provide a good environment to do so.

• After addressing all comments from a review, ping your on Flowdock for the next pass.

• If there is a style guideline that affects your PR and you believe the guideline is incorrect, post an issue or send
a PR to the COSDev repo rather than discussing it in the PR.

1.5.3 Reviewing Code

• Make sure you understand the purpose of the code being reviewed.

• Checkout the branch being reviewed, and manually test the intended behavior.

• In your comments, keep in mind the fact that what you’re saying can easily be perceived as personal criticism
(even if it’s not–it shouldn’t be) and adjust your tone accordingly.

• After doing a pass of code review, “Approve” or “Request Changes” in the GitHub UI.

• Style fixes should refer to the style guides, when possible.

Example style comment:

> Use parentheses for line continuation.

From http://cosdev.readthedocs.org/en/latest/style_guides/python.html:

8 Chapter 1. Process

https://github.com/CenterForOpenScience/COSDev

CHAPTER 2

Style Guides

2.1 Python

Follow PEP8, when sensible.

2.1.1 Naming

• Variables, functions, methods, packages, modules

– lower_case_with_underscores

• Classes and Exceptions

– CapWords

• Protected methods and internal functions

– _single_leading_underscore(self, ...)

• Private methods

– __double_leading_underscore(self, ...)

• Constants

– ALL_CAPS_WITH_UNDERSCORES

General Naming Guidelines

Use singlequotes for strings, unless doing so requires lots of escaping.

Avoid one-letter variables (esp. l, O, I).

Exception: In very short blocks, when the meaning is clearly visible from the immediate context

9

http://www.python.org/dev/peps/pep-0008/

COS Development, Release 1.0

for e in elements:
e.mutate()

Avoid redundant labeling.

Yes
import audio

core = audio.Core()
controller = audio.Controller()

No
import audio

core = audio.AudioCore()
controller = audio.AudioController()

Prefer “reverse notation”.

Yes
elements = ...
elements_active = ...
elements_defunct = ...

No
elements = ...
active_elements = ...
defunct_elements ...

Avoid getter and setter methods.

Yes
person.age = 42

No
person.set_age(42)

2.1.2 Indentation

Use 4 spaces–never tabs. You may need to change the settings in your text editor of choice.

2.1.3 Imports

Import entire modules instead of individual symbols within a module. For example, for a top-level module canteen
that has a file canteen/sessions.py,

Yes

import canteen
import canteen.sessions
from canteen import sessions

No
from canteen import get_user # Symbol from canteen/__init__.py
from canteen.sessions import get_session # Symbol from canteen/sessions.py

10 Chapter 2. Style Guides

COS Development, Release 1.0

Exception: For third-party code where documentation explicitly says to import individual symbols.

Rationale: Avoids circular imports. See here.

Put all imports at the top of the page with three sections, each separated by a blank line, in this order:

1. System imports

2. Third-party imports

3. Local source tree imports

Rationale: Makes it clear where each module is coming from.

If you have intentionally have an unused import that exists only to make imports less verbose, be explicit about it. This
will make sure that someone doesn’t accidentally remove the import (not to mention that it keeps linters happy)

from my.very.distant.module import Frob

Frob = Frob

2.1.4 String formatting

Prefer str.format to “%-style” formatting.

Yes
'Hello {}'.format('World')
OR

'Hello {name}'.format(name='World')

No

'Hello %s' % ('World',)

2.1.5 Print statements

Use the print() function rather than the print keyword (even if you’re using Python 2).

Yes
print('Hello {}'.format(name))

No
print 'Hello %s ' % name

2.1.6 Documentation

Follow PEP257’s docstring guidelines. reStructured Text and Sphinx can help to enforce these standards.

All functions should have a docstring - for very simple functions, one line may be enough:

"""Return the pathname of ``foo``."""

Multiline docstrings should include:

• Summary line

• Use case, if appropriate

2.1. Python 11

https://sites.google.com/a/khanacademy.org/forge/for-developers/styleguide/python#TOC-Imports
http://www.python.org/dev/peps/pep-0257/
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx-doc.org/

COS Development, Release 1.0

• Args

• Return type and semantics, unless None is returned

"""Train a model to classify Foos and Bars.

Usage::

>>> import klassify
>>> data = [("green", "foo"), ("orange", "bar")]
>>> classifier = klassify.train(data)

:param train_data: A list of tuples of the form ``(color, label)``.
:return: A trained :class:`Classifier <Classifier>`
"""

Notes

• Use action words (“Return”) rather than descriptions (“Returns”).

• Document __init__ methods in the docstring for the class.

class Person(object):
"""A simple representation of a human being.

:param name: A string, the person's name.
:param age: An int, the person's age.
"""
def __init__(self, name, age):

self.name = name
self.age = age

2.1.7 On Comments

Use them sparingly. Prefer code readability to writing a lot of comments. Often, small methods and functions are
more effective than comments.

Yes
def is_stop_sign(sign):

return sign.color == 'red' and sign.sides == 8

if is_stop_sign(sign):
stop()

No
If the sign is a stop sign
if sign.color == 'red' and sign.sides == 8:

stop()

When you do write comments, use them to explain why a piece code was used, not what it does.

Method Overrides

One useful place for comments are method overrides.

12 Chapter 2. Style Guides

COS Development, Release 1.0

class UserDetail(generics.RetrieveUpdateAPIView, UserMixin):

overrides RetrieveUpdateAPIView
def get_serializer_context(self):

return {'request': self.request}

2.1.8 Calling Superclasses’ Methods

Use super when there is only one superclass.

class Employee(Person):

def __init__(self, name):
super(Employee, self).__init__(name)
or super().__init__(name) in Python 3
...

Call the method directly when there are multiple superclasses.

class DevOps(Developer, Operations):

def __init__(self):
Developer.__init__(self)
...

2.1.9 Line lengths

Don’t stress over it. 80-100 characters is fine.

Use parentheses for line continuations.

wiki = (
"The Colt Python is a .357 Magnum caliber revolver formerly manufactured "
"by Colt's Manufacturing Company of Hartford, Connecticut. It is sometimes "
'referred to as a "Combat Magnum". It was first introduced in 1955, the '
"same year as Smith & Wesson's M29 .44 Magnum."

)

2.1.10 Recommended Syntax Checkers

We recommend using a syntax checker to help you find errors quickly and easily format your code to abide by the
guidelines above. Flake8 is our recommended checker for Python. It will check for both syntax and style errors and is
easily configurable. It can be installed with pip:

$ pip install flake8

Once installed, you can run a check with:

$ flake8

Note: We highly recommend that you add a git hook to check your code before you commit it. You only need to run
the following command once:

2.1. Python 13

http://flake8.readthedocs.org/en/latest/

COS Development, Release 1.0

Current directory must be a git repo
$ flake8 --install-hook

This adds the proper hook to .git/hooks/pre-commit.

There are a number of plugins for integrating Flake8 with your preferred text editor.

Vim

• syntastic (multi-language)

Sublime Text

• Sublime Linter with SublimeLinter-flake8 (must install both)

2.1.11 Credits

• PEP8 (Style Guide for Python)

• Pythonic Sensibilities

• Python Best Practice Patterns

2.2 Javascript

Style guidelines for writing Javascript.

See also:

Writing a JS module for the OSF? See the Javascript Modules page in the OSF section.

2.2.1 Style

Follow Felix’s Node Style and airbnb’s Style Guide with a few exceptions:

• Use 4 spaces for indentation.

• Use self to save a reference to this.

2.2.2 Errors

• Always throw Error instances, not strings.

// Yes
throw new Error('Something went wrong');

// No
throw 'Something went wrong';

// No
throw Error('Something went wrong');

14 Chapter 2. Style Guides

https://github.com/scrooloose/syntastic
https://sublime.wbond.net/packages/SublimeLinter
https://sublime.wbond.net/packages/SublimeLinter-flake8
http://www.python.org/dev/peps/pep-0008/
http://www.nilunder.com/blog/2013/08/03/pythonic-sensibilities/
http://youtu.be/GZNUfkVIHAY
https://github.com/felixge/node-style-guide
https://github.com/airbnb/javascript/tree/es5-deprecated/es5

COS Development, Release 1.0

2.2.3 CommonJS Modules

• Group imports in the following order, separated by a blank line:

1. Third party libraries

2. Local application/library-specific imports

• module.exports are always grouped at the end of a file. Do not use export throughout the file.

• Keep testability in mind in deciding what to export.

// Yes
module.exports = {

SomeClass: SomeClass,
_privateFunction: privateFunction

}

// Yes
function SomeClass() { ... }
SomeClass._privateFunction = function() {...}

module.exports = SomeClass;

// No
var SomeClass = exports.SomeClass = function() { ... };
var privateFunction = exports._privateFunction = function() { ... };

2.2.4 Documentation

Use the YUIDoc standard for writing JS comment blocks.

Example:

/**
* A wrapper around the ACE editor that asynchronously loads

* and publishes its content.

*
* @param {String} selector Selector for the editor element

* @param {String} url URL for retrieving and posting content.

*/

For simple functions and methods, a single-line docstring will suffice.

/** Update the viewModel with data fetched from a server. */

2.2.5 jQuery

Follow Abhinay Rathore’s jQuery Coding Standards Guide.

AJAX

For PUTting and POSTing to JSON endpoints in the OSF, use the $osf.postJSON and $osf.putJSON func-
tions (located in osfHelpers.js). This will handle JSON stringification as well as set the correct dataType and
contentType.

2.2. Javascript 15

https://yui.github.io/yuidoc/
http://lab.abhinayrathore.com/jquery-standards/

COS Development, Release 1.0

When using $osf.postJSON, $osf.putJSON, or jQuery.ajax, use the Promises interface.

function successHandler(response) { ... }
function failureHandler(jqXHR, status, error) {...}

var request = $.ajax({ ... });
request.done(successHandler);
request.fail(failureHandler);

// OR
$.ajax({ ... }).then(successHandler, failureHandler);

2.2.6 Promises

• Prefer promises to callbacks.

// Yes
function makeRequest() {

var request = $.getJSON('/api/projects/');
return request;

}
var request = makeRequest();
request.done(function(response) { console.log(response); })

// No
function makeRequest(callback){

$.getJSON('/api/projects/', function(response) {
callback && callback(response);

}) ;
}
makeRequest(function(response) {console.log(response)});

• When doing AJAX requests or other async work, it’s often useful to return a promise that resolves to a useful
value (e.g. model objects or “unwrapped” responses).

function User(data) {
this._id = data._id;
this.username = data.username;

}

/** Return a promise that resolves to a list of Users */
var getUsers = function() {

var ret = $.Deferred();

var request = $.getJSON('/users/');
request.done(function(response) {

var users = $.map(response.users, function(data){
return User(data);

});
ret.resolve(users);

});
request.fail(function(xhr, status, error) {

Raven.captureMessage(...);
ret.reject(xhr, status, error);

});
return ret.promise();

16 Chapter 2. Style Guides

COS Development, Release 1.0

};

getUsers().done(function(users){
users.forEach(function(user)){

console.log(user._id);
console.log(user.username);

};
})

2.2.7 Encapsulation

Use the Combination Constructor/Prototype pattern for encapsulation. You can use the following functions to provide
syntactic sugar for creating “classes”:

function noop() {}

function defclass(prototype) {
var constructor = prototype.hasOwnProperty('constructor') ? prototype.constructor

→˓: noop;
constructor.prototype = prototype;
return constructor;

}

function extend(cls, sub) {
var prototype = Object.create(cls.prototype);
for (var key in sub) { prototype[key] = sub[key]; }
prototype.super = cls.prototype;
return defclass(prototype);

}

// Example usage:
var Animal = defclass({

constructor: function(name) {
this.name = name || 'unnamed';
this.sleeping = false;

},
sayHi: function() {

console.log('Hi, my name is ' + this.name);
}

});

var Person = extend(Animal, {
constructor: function(name) {

this.super.constructor.call(name);
this.name = name || 'Steve';

}
});

Note: In the OSF, the defclass and extend functions are available in the oop.js module.

2.2. Javascript 17

COS Development, Release 1.0

2.2.8 Recommended Syntax Checkers

We recommend using a syntax checker to help you find errors quickly and easily format your code to abide by the
guidelines above. JSHint is our recommended checker for Javascript. It can be installed with npm:

$ npm install -g jshint

There are a number of plugins for integrating jshint with your preferred text editor.

Vim

• syntastic (multi-language)

Sublime Text

• Sublime Linter with SublimeLinter-jshint (must install both)

PyCharm

• Follow these docs: http://www.jetbrains.com/pycharm/webhelp/jshint.html

2.3 HTML and CSS

• Follow mdo’s Code Guide, with one exception: Use four spaces for indentation (instead of two).

• Use .lowercase-and-dashes for class names and #camelCase for IDs.

• Add a comment marking the end of large blocks. Use <!-- end class-name -->

<div class="container-fluid">
Lots of markup...

</div><!-- end container-fluid -->

• Avoid inline CSS. Prefer CSS classes for maintainability and reuseability.

2.4 Git

• Use the imperative mode (e.g, “Fix rendering of user logs”) in commit messages.

• If your patch addresses a JIRA ticket, add the JIRA ticket ID to the commit message.

Improve UI for changing names

- Change button color for Auto-fill
- Add help text

[#OSF-4251]

• If your patch fixes a Github issue, you can add the issue to your commit message so that the issue will automat-
ically be closed when the patch is merged.

Fix bug in loading filetree

[fix CenterForOpenScience/osf.io#982]

• Write good commit messages.

18 Chapter 2. Style Guides

http://jshint.com
https://github.com/scrooloose/syntastic
https://sublime.wbond.net/packages/SublimeLinter
https://sublime.wbond.net/packages/SublimeLinter-jshint
http://www.jetbrains.com/pycharm/webhelp/jshint.html
http://mdo.github.io/code-guide/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

COS Development, Release 1.0

Here’s a model message, taken from the above post:

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72
characters or so. In some contexts, the first line is treated as the
subject of an email and the rest of the text as the body. The blank
line separating the summary from the body is critical (unless you omit
the body entirely); tools like rebase can get confused if you run the
two together.

Write your commit message in the imperative: "Fix bug" and not "Fixed bug"
or "Fixes bug." This convention matches up with commit messages generated
by commands like git merge and git revert.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, followed by a
single space, with blank lines in between, but conventions vary here

- Use a hanging indent

2.5 Ansible

• Prefer dictionary syntax for passing many arguments to a module.

- name: Ensure proper permissions on apps directory
file:
path: "/opt/apps/"
mode: 0755
group: "osf"
owner: "www-data"

• Do not prefix task names with the name of the role.

YES
- name: Make user python is installed

apt: name="python-dev"

NO
- name: uwsgi | Make user python is installed

apt: name="python-dev"

• Prefix all default variables with the role name and an underscore.

OSF role

osf_virtualenv: "/opt/envs/osf/"
osf_repo_branch: "master"

• Document default variables using comments.

2.5. Ansible 19

COS Development, Release 1.0

20 Chapter 2. Style Guides

CHAPTER 3

OSF Development

3.1 Setting up the OSF

Use Docker and Docker Compose for local development. See https://github.com/CenterForOpenScience/osf.io/blob/
develop/README-docker-compose.md for up-to-date docs for running the OSF in Docker locally.

3.2 OSF Guidelines

3.2.1 General

• For node endpoints, use node.url_for and node.api_url_for for URL lookup

Assuming a URL Rule:
Rule(
[
'/project/<pid>/tags/<tid>',
'/project/<pid>/node/<nid>/tags/<tid>/',
],
'put',
node_views.node_tags_put,
json_renderer,
)

Yes
Pass the name of the view function and URL params as keyword arguments
url = node.api_url_for('node_tags_put', tid=tag._id)
=> /project/1rdsf/tags/mytag/

No
url = os.path.join('/api', 'v1', node._primary_key, 'tags', tag._id)

• Use website.utils.api_url_for and website.utils.web_url_for for general URL lookup.

21

https://docs.docker.com/compose/
https://github.com/CenterForOpenScience/osf.io/blob/develop/README-docker-compose.md
https://github.com/CenterForOpenScience/osf.io/blob/develop/README-docker-compose.md

COS Development, Release 1.0

Yes
from website.utils import api_url_for
url = api_url_for('user_settings')

No
url = os.path.join('/user', 'settings')

• Use the above functions in Mako templates; they are available by default.

<!-- Yes -->
<p>Visit your user settings.

<!-- No -->
<p>Visit your user settings.

3.2.2 Views

• If a decorator injects keyword arguments, declare the keyword arguments whenever possible. Avoid pulling
them from the kwargs dictionary.

Yes
@must_be_logged_in
def user_settings_put(auth, **kwargs):

#...

@must_be_contributor_or_public
def get_project_comments(auth, node, **kwargs):

...

No
@must_be_logged_in
def user_settings_put(**kwargs):

auth = kwargs['auth']
#...

• Use framework.flask.redirect to return redirect responses. It has the same functionality as flask.
redirect except that it will reappend querystring parameters for view-only links when necessary. Do not use
flask.redirect.

3.2.3 Responses

• Use correct HTTP status codes. You can used the constants in httplib to help.

Yes
@must_be_logged_in
def user_token_post(auth, **kwargs):

#...
return serialized_settings, 201
OR
return serialized_settings, httplib.CREATED

No
@must_be_logged_in
def user_token_post(auth, **kwargs):

22 Chapter 3. OSF Development

http://www.restapitutorial.com/httpstatuscodes.html

COS Development, Release 1.0

#...
return serialized_settings # Implicitly returns 200 response

• Be consistent with your response format.

TODO: Come up with a standard format. The Dropbox add-on uses the following, though we may decide
on a different convention later.

{
"result": {"name": "New Project", "id": ...} # ... the requested object(s) ,
"message": "Successfully created project" # ... an optional message

}

• Prefer namespaced representations to arbitrary prefixes in response data.

// Yes
{

'node': {
'_id': '123abc',
'urls': {

'api': '/api/v1/123abc',
'web': '/123abc/'

}
},
'urls': {

'latest': '/files/some-file-id/latest/',
'detail': '/files/some-file-id/'

}
}

// No
{

'node_id': '123abc',
'node_api_url': '/api/v1/123abc',
'node_web_url': '/123abc/',
'latest_file_url': '/files/some-file-id/latest/',
'file_detail_url': '/files/some-file-id/'

}

3.2.4 Running Migrations

Migrations are located in the scripts directory.

To run them:

$ python -m scripts.script_name

To migrate search records:

invoke migrate_search

3.2. OSF Guidelines 23

COS Development, Release 1.0

3.2.5 Error Handling

Server-side

If a view should return an error response, raise a framework.exceptions.HTTPError, optionally passing a
short and long message. This will ensure that a properly formatted HTML or JSON response is returned (depending
on whether the route is an API or web route). Do NOT return a dictionary.

from framework.exceptions import HTTPError

@must_be_logged_in
def user_settings_get(auth, **kwargs):

"""Return the current user's settings."""
try:

settings = get_user_settings(auth)
except ModularOdmException:

raise HTTPError(404,
msg_short='User not found',
msg_long='The user could not be in our database.'

)
return serialized_settings(settings), 200

Client-side

All client-side HTTP requests should have proper error handlers. As an example, you might display an error message
in a modal if a request fails.

Note: Use RavenJS (a JS client for Sentry) to log unexpected errors to our Sentry server.

var url = '/api/v1/profile';
var request = $osf.putJSON(url, {'email': 'foo@bar.com'});

request.done(function(response) { ... });

request.fail(function(jqxhr, status, error) {
bootbox.alert({

title: "Error",
message: "We're sorry. Your profile could not be updated at this time. Please

→˓try again later."
});
// Log error to Sentry
// Add context (e.g. error status, error messages) as the 2nd argument
Raven.captureMessage('Error while updating user profile', {

url: url, status: status, error: error
});

});

When appropriate, you can use the generic $osf.handleJSONError, which will display a generic error message
in a modal to the user if a failure occurs.

var $osf = require('osfHelpers');
// ...
request.fail($osf.handleJSONError);

24 Chapter 3. OSF Development

https://raven-js.readthedocs.org/en/latest/

COS Development, Release 1.0

3.2.6 Documentation

Docstrings

• Write function docstrings using Sphinx conventions (see here).

• For parameters that are not passed directly to the function (e.g. query string arguments, POST arguments),
include the source of the parameter in the docstring:

def my_view(my_param):
"""Do something rad.

:param str my_param: My directly passed parameter
:param-query str foo: A parameter included in the query string; look me up in

→˓`request.args`
:param-post str bar: A parameter included in the POST payload; look me up in

→˓`request.form`
:param-json str baz: A parameter included in the JSON payload; look me up in

→˓`request.json`

"""
Rad code here

3.2.7 Misc

Generating fake data

1. Install fake-factory

$ pip install fake-factory

2. Create your an account on your local osf. Remember the email address you use.

3. Run the fake data generator script, passing in your username (email)

$ python -m scripts.create_fakes --user fred@cos.io

where fred@cos.io is the email of the user you created.

After you run the script, you will have 3 fake projects, each with 3 fake contributors (with you as the creator).

Dialogs

We use Bootbox to generate modal dialogs in the OSF. When calling a bootbox method, always pass in an object of
arguments rather than positional arguments. This allows you to include a title in the dialog.

// Yes
bootbox.confirm({

title: 'Permanently delete file?',
message: 'Are you sure you want to delete this file?',
callback: function(confirmed) {

// ..
}

})

// No

3.2. OSF Guidelines 25

https://pythonhosted.org/an_example_pypi_project/sphinx.html#function-definitions
http://bootboxjs.com/

COS Development, Release 1.0

bootbox.confirm('Are you sure you want to delete this file?',
function(confirmed) {

// ...
}

)

3.3 Testing the OSF

Warning: This page contains outdated information. We now use pytest and pytest-django instead of nose for
tests.

This page includes information about testing the OSF codebase.

See also:

For more general testing guidelines, see the Testing page.

3.3.1 The OsfTestCase

The tests.base.OsfTestCase class is the base class for all OSF tests that require a database. Its class setup
and teardown methods will create a temporary database that only lives for the duration of the test class.

A few things to note about the OsfTestCase:

• Its setUp method will instantiate a webtest_plus.TestApp. You should not instantiate a TestApp
yourself. Just use self.app.

• If you override setUp or tearDown, you must always call super(YourTestClass, self).setUp
or super(YourTestClass, self).tearDown(), respectively.

• Following the above two rules ensures that your tests execute within a Flask app context.

• The test database lives for the duration of a test class. This means that database records created within a
TestCase’s methods may interact with each other in unexpected ways. Use factories and the tests.base.
fake generator for creating unique test objects.

3.3.2 Factories

We use the factory-boy library for defining our factories. Factories allow you to create test objects customized for the
current test, while only declaring test-specific fields.

Using Factories

from tests.factories import UserFactory
from tests.base import fake

class TestUser(OsfTestCase):

def test_a_method_of_the_user_class(self):
user = UserFactory() # creates a user
user2 = UserFactory() # creates a user with a different email address

26 Chapter 3. OSF Development

http://flask.pocoo.org/docs/appcontext/
https://github.com/rbarrois/factory_boy

COS Development, Release 1.0

You can also specify attributes when needed
user3 = UserFactory(username='fredmercury@queen.io')
user4 = UserFactory(password=fake.md5())
...

3.3.3 Unit Tests

Testing Models

Unit tests for models belong in tests/test_models.py. Each model should have its own test class. You can
have multiple test classes for a single model if necessary.

from frameworks.auth.core import User

from tests.base import OsfTestCase, fake

class TestUser(OsfTestCase):

def test_check_password(self):
user = User(username=fake.email(), fullname='Nick Cage')
user.set_password('ghostrider')
user.save()
assert_true(user.check_password('ghostrider'))
assert_false(user.check_password('ghostride'))

...

3.3.4 Views Tests

Views tests are used to test that our endpoints return the expected responses. We use the webtest library to interact
with our application under test.

The OsfTestCase provides a self.app attribute that is a webtest_plus.TestApp object.

Things to test:

• Status codes

• JSON responses

• Records are updated appropriately in the database

from tests.base import OsfTestCase
from tests.factories import ProjectFactory, AuthUserFactory

class TestProjectViews(OsfTestCase):

def setUp(self):
OsfTestCase.setUp(self)
The AuthUserFactory automatically generates an
API key for the user. It can be accessed from the
`auth` attribute
self.user = AuthUserFactory()
self.project = ProjectFactory(creator=self.user)

3.3. Testing the OSF 27

http://webtest.readthedocs.org/en/latest/

COS Development, Release 1.0

Status codes should be tested
def test_get_project_returns_200_with_auth(self):

url = self.project.api_url_for('project_get')
This endpoint requires authentication. We use the user's API key to
circumvent the login process
res = self.app.get(url, auth=self.user.auth)
assert_equal(res.status_code, 200)

The JSON response is correct
assert_equal(res.json['id'], self.project._id)
assert_equal(res.json['title'], self.project.title)
...

def test_get_project_returns_403_with_no_auth(self):
url = self.project.api_url_for('project_get')
Make sure to pass expect_error=True if you expect an error response.
res = self.app.get(url, auth=self.user.auth, expect_errors=True)
assert_equal(res.status_code, 403)

3.3.5 Functional Tests

Functional tests in the OSF also use webtest. These tests mimic how a user would interact with the application through
their browser.

Things to test:

• User interactions, such as clicking on links, filling out forms

• Content that you expect to appear on the page.

from tests.base import OsfTestCase
from tests.factories import ProjectFactory, AuthUserFactory

class TestProjectDashboard(OsfTestCase):

def setUp(self):
OsfTestCase.setUp(self)
self.user = AuthUserFactory()
self.project = ProjectFactory(creator=self.user)

Use line comments to write out user stories
def test_can_access_wiki_from_project_dashboard(self):

Goes to project dashboard (user is logged in)
url = self.project.web_url_for('view_project')
res = self.app.get(url, auth=self.user.auth)

Clicks the Wiki link,
follows redirect to wiki home page
res = res.click('Wiki').follow()

Sees 'home' on the page
assert_in('home', res)

Note: The TestResponse.showbrowser() method is especially useful for debugging functional tests. It
allows you to open the current page in your browser at a given point in the test.

28 Chapter 3. OSF Development

http://webtest.readthedocs.org/en/latest/forms.html

COS Development, Release 1.0

res = self.app.get(url)
res.showbrowser() # for debugging

Just be sure to remove the line when you are done debugging.

3.3.6 Regression Tests

Regression tests may fall under any one of the categories above (unit, model, views, functional). If you write a
regression test for a specific issue, it is often helpful to link to the issue in a line comment above the test.

Regression test for https://github.com/CenterForOpenScience/osf.io/issues/1136
def test_cannot_create_project_with_blank_name(self):

...

3.3.7 Javascript Tests

Running tests

Before running tests, make sure you have the dependencies installed.

$ npm install

Javascript tests are run with

$ inv karma

This will start a Karma process which will run the tests on every JS code change.

You can specify which browser to run your tests against by passing the --browser (or -b, for short) option.

$ inv karma -b Chrome

Chrome and Firefox are supported after you’ve run npm install. To run on other browsers, install the appropriate
launcher with npm (see here for available launchers).

$ npm install karma-safari-launcher
$ inv karma -b Safari

Writing Tests

We use the following libraries for writing tests:

• Mocha: Provides the interface for test cases.

• Chai: Provides assertion functions.

• Sinon: Provides test spies, stubs, and mocks.

See the official docs for these libraries for more information.

3.3. Testing the OSF 29

https://karma-runner.github.io/
https://karma-runner.github.io/0.12/config/browsers.html
http://mochajs.org/
http://chaijs.com/
http://sinonjs.org/

COS Development, Release 1.0

OSF-specific Guidelines

• Core OSF tests go in website/static/js/tests/. Addons tests go in website/addons/
<addon_name>/static/tests/

• Karma will run every module that has the .test.js extension.

• Use Chai’s assert interface.

• To mock HTTP requests, use the createServer utility from the js/tests/utils module.

Gotchas and Pitfalls

• When mocking out endpoints with sinon, be careful when dealing with URLs that accept query parameters. You
can pass a regex as a url value to createServer.

var endpoints = {
// Use regex to handle query params
{url: /\/api\/users\/.+/, response: {...}}

];
server = utils.createServer(sinon, endpoints);

• Remember for async tests, you need to pass and call the ‘done’ callback. Failing to pass and call done in async
tests can cause unpredictable and untracable errors in your test suite.

In particular you might see failed assertions from another test being printed to the console as if they’re happening in
some other test. Since we’re concatenating test files together with webpack, this error could be coming from any of
the tests run before the error occurs (maybe from another file altogether).

describe('My feature', () => {
...
it('Does something asnyc', (done) => {

myFeature.myAsyncFunction()
.always(function() {
// make some assertions
done();

});
});

});

Test Boilerplate

The following boilerplate should be included at the top of every test module.

/*global describe, it, expect, example, before, after, beforeEach, afterEach, mocha,
→˓sinon*/
'use strict';
var assert = require('chai').assert;
// Add sinon asserts to chai.assert, so we can do assert.calledWith instead of sinon.
→˓assert.calledWith
sinon.assert.expose(assert, {prefix: ''});

Debugging tests

• Run karma: inv karma

30 Chapter 3. OSF Development

http://chaijs.com/api/assert/

COS Development, Release 1.0

• Browse to localhost:9876 in your browser.

• Click the DEBUG button on the top right.

• Open dev tools and open up the debugger tab.

• Add breakpoints or debugger; statements where necessary.

Testing Internet Explorer on a Mac

• Install Virtualbox and Internet Explorer.

• Pick a name for your Microsoft IE localhost, in this example, we will use “windows.fun”

• Add the following lines of code to your website/settings/local.py.

ELASTIC_URI = 'windows.fun:9200'
DOMAIN = 'http://windows.fun:5000/'
API_DOMAIN = 'http://windows.fun:8000/'
ELASTIC_URI = 'windows.fun:9200'
WATERBUTLER_URL = 'http://windows.fun:7777'
CAS_SERVER_URL = 'http://windows.fun:8080'
MFR_SERVER_URL = 'http://windows.fun:7778'

• Add the following to your /etc/hosts file on the mac with this line.

129.0.0.1 windows.fun

• In Virtualbox, update your windows hosts file with the following line.

10.0.2.2 windows.fun

• In Virtualbox preferences, set the network adaptor Attached To setting to Nat

• As of this writing, Internet Explorer’s debugger doesn’t work without an update. To update, go to this link and
patch IE.

• Restart everything in the OSF, and how you can access the osf on Internet Explorer from http://windows.fun:
5000. The http://locahost:5000 url will still work on your mac browser.

3.4 Javascript Modules How-To

This section describes how to write Javascript modules for the OSF, use webpack to build assets, and include built
assets in HTML. We also provide starter templates for new JS modules.

See also:

Looking for the JS style guidelines? See here .

3.4.1 Writing Modules

• Use the CommonJS module style.

• Reuseable modules go in website/static/js/. Name modules in lowerCamelCase.

• Initialization code for a page goes in a module within website/static/js/pages/. Name page modules
with lower-dashed-case.

3.4. Javascript Modules How-To 31

http://osxdaily.com/2011/09/04/internet-explorer-for-mac-ie7-ie8-ie-9-free/
http://helpdeskgeek.com/windows-7/windows-7-hosts-file/
https://www.microsoft.com/en-us/download/confirmation.aspx?id=45134
http://windows.fun:5000
http://windows.fun:5000
http://locahost:5000
https://webpack.github.io/docs/

COS Development, Release 1.0

A Note on Utility Functions

Put reusable utility functions in website/static/js/osfHelpers.js.

// osfHelpers.js

var myCopaceticFunction = function() {...}

// ...
module.exports = {

// ...
myCopaceticFunction: myCopaceticFunction

};

Example

Let’s say you’re creating a reuseable Markdown parser module for the wiki edit page. Your module would go in
website/static/js/.

website/static/js/osfMarkdownParser.js

/**
* A Markdown parser with special syntax for linking to

* OSF projects.

**/
'use strict';

// CommonJS/Node-style imports at the top of the file

var $osf = require('js/osfHelpers');

// Private methods go up here
function someHelper() {

//
}
// This is the public API
// The constructor
function OSFMarkdownParser (selector, options) {

this.selector = selector;
this.options = options;
this.init();

}
// Methods
OSFMarkdownParser.prototype.init = function() {

//...
}

OSFMarkdownParser.prototype.somePublicMethod = function() {
//...

}

// Export the constructor
module.exports = OSFMarkdownParser;

The initialization of your Markdown parser would go in website/static/js/pages/wiki-edit-page.js
(assume that this file already exists).

website/static/js/pages/wiki-edit-page.js

32 Chapter 3. OSF Development

COS Development, Release 1.0

// Initialization of the Markdown parser
var OSFMarkdownParser = require('js/osfMarkdownParser');

new OSFMarkdownParser('#wikiInput', {...});

// ... other wiki-related initialization.

3.4.2 Third-party Libraries

The following libraries can be imported in your JS modules (using require('name')):

• Any library listed in bower.json

• Any library listed in package.json

• Any library listed in the resolve.alias entry of webpack.common.config.js

3.4.3 Building and Using Modules

Webpack Entry Points

Each module in website/static/js/pages corresponds to an entry point in webpack and has a rough one-to-
one mapping with a page on the OSF. Here is what the wiki-edit-page entry would look like in the webpack
configuration file.

webpack.common.config.js

// Entry points built by webpack. The keys of this object correspond to the
// names of the built files which are put in /website/static/public/js/. The values
// in the object are the source files.
var entry = {

//...
'wiki-edit-page': staticPath('js/pages/wiki-edit-page.js'),
// ...

}

Note: You will seldom have to modify webpack.common.config.js. The only time you may need to care
about it is when a completely new page is added to the OSF.

Building with Webpack

Webpack parses the dependency graphs of the modules defined in the entry points and builds them into single files
which can be included on HTML pages. The built files reside in website/static/public/js/. There-
fore, the built file which would include your Markdown parser initialization would be in /static/public/js/
wiki-edit-page.<hash>.js. This is the file that would be included in the HTML template.

Note: Webpack will add a hash to the filenames of the built files to prevent users’ browsers from caching old versions
(example: wiki-edit-page.js becomes wiki-edit-page.4ec1318376695bcd241b.js).

Therefore, we need to resolve the short filenames to the full filenames when we include them in the HTML. More on
that in the next section.

3.4. Javascript Modules How-To 33

https://github.com/CenterForOpenScience/osf.io/blob/develop/bower.json
https://github.com/CenterForOpenScience/osf.io/blob/develop/package.json
https://github.com/CenterForOpenScience/osf.io/blob/d504cefa315d00f4dce3c6ca4310ad3d4e126987/webpack.common.config.js#L77-103
https://webpack.github.io/docs/multiple-entry-points.html

COS Development, Release 1.0

To build the assets for local development, use the assets invoke task.

$ inv assets --debug --watch
OR
$ inv assets -dw

Loading the Modules in HTML with webpack_asset

Once you have the built assets, you can include them on HTML pages with a <script> tag. In order to resolve the
short filenames to the filenames on disk (which include hashes), use the webpack_asset Mako filter.

website/templates/wiki/edit.mako

<%def name="javascript_bottom()">
<script src=${"/static/public/js/wiki-edit-page.js" | webpack_asset}></script>
</%def>

Examples

• js/folderPicker.js

• js/nodeControl.js is used within js/pages/project-base-page.js. The built file is included in tem-
plates/project_base.mako.

Todo: Document how to use mako variables in JS modules (contextVars)

3.4.4 Knockout Modules

A module contains the Knockout model(s) and ViewModel(s) for a single unit of funtionality (e.g. login form, con-
tributor manager, log list, etc.)

Knockout modules aren’t much different from regular modules.

• Apply bindings in the constructor.

• Use the osfHelpers.applyBindings helper. This will ensure that your ViewModel will be bound to the
element that you expect (and not fall back to <body>, as ko.applyBindings will sometimes do). You can
also pass $osf.applyBindings a selector instead of an HTMLElement.

• Name the HTML ID that you bind to with “Scope”. Example: <div id="logfeedScope">.

• Adding the scripted CSS class to the div you bind to will hide the div until $osf.applyBindings
finishes executing. This is useful if you don’t want to show any HTML for your component until the ViewModel
is bound.

website/static/js/logFeed.js

/**
* Renders a log feed.

**/
'use strict';
var ko = require('knockout');

var $osf = require('js/osfHelpers');

34 Chapter 3. OSF Development

https://github.com/CenterForOpenScience/osf.io/blob/develop/website/static/js/folderPicker.js
https://github.com/CenterForOpenScience/osf.io/blob/develop/website/static/js/nodeControl.js
https://github.com/CenterForOpenScience/osf.io/blob/12cce5b9578c4d129f9d6f12ed78516b7e1640a0/website/static/js/pages/project-base-page.js#L4
https://github.com/CenterForOpenScience/osf.io/blob/d504cefa315d00f4dce3c6ca4310ad3d4e126987/website/templates/project/project_base.mako#L65
https://github.com/CenterForOpenScience/osf.io/blob/d504cefa315d00f4dce3c6ca4310ad3d4e126987/website/templates/project/project_base.mako#L65

COS Development, Release 1.0

/**
* Log model.

*/
var Log = function(params) {

var self = this;
self.text = ko.observable('');
// ...

};

/**
* View model for a log list.

* @param {Log[]} logs An array of Log model objects to render.

*/
var LogViewModel = function(logs) {

var self = this;
self.logs = ko.observableArray(logs);
// ...

};

////////////////
// Public API //
////////////////

var defaults = {
data: null,
progBar: '#logProgressBar'

};

function LogFeed(selector, options) {
var self = this;
self.selector = selector;
self.options = $.extend({}, defaults, options);
self.$progBar = $(self.options.progBar);
self.logs = self.options.data.map(function(log) {

return new Log(log.params);
})

};
// Apply ViewModel bindings
LogFeed.prototype.init = function() {

var self = this;
self.$progBar.hide();
$osf.applyBindings(new LogViewModel(self.logs), self.selector);

};

module.exports = LogFeed;

website/static/pages/some-template-page.js

'use strict';

var LogFeed = require('js/logFeed');

// Initialize the LogFeed
new LogFeed('#logScope', {data: ...});

website/templates/some_template.mako

3.4. Javascript Modules How-To 35

COS Development, Release 1.0

<div class="scripted" id="logScope">
<ul data-bind="foreach: {data: logs, as: 'log'}">

...

</div>

<%def name="javascript_bottom()">
<script src=${"/static/public/js/some-template-page.js" | webpack_asset}></script>
</%def>

Examples

• Full LogFeed module

• comment.js

3.4.5 Templates

To help you get started on your JS modules, here are some templates that you can copy and paste.

JS Module Template

/**
* [description]

*/
'use strict';
var $ = require('jquery');

function MyModule () {
// YOUR CODE HERE

}

module.exports = {
MyModule: MyModule

};

Knockout Module Template

/**
* [description]

*/
'use strict';
var ko = require('knockout');

var $osf = require('js/osfHelpers');

function ViewModel(url) {
var self = this;
// YOUR CODE HERE

}

36 Chapter 3. OSF Development

https://github.com/CenterForOpenScience/osf.io/blob/develop/website/static/js/logFeed.js
https://github.com/CenterForOpenScience/osf.io/blob/develop/website/static/js/comment.js

COS Development, Release 1.0

function MyModule(selector, url) {
this.viewModel = new ViewModel(url);
$osf.applyBindings(this.viewModel, selector);

}

module.exports = {
MyModule

};

3.5 Developing An Addon

In Progress: Help out by sending a PR!

3.5.1 Notes and gotchas

• The words SHALL, MUST, MAY, etc are to be interpreted as defined here.

• The add-on system is module based not class based

• Everything you touch should be in the website/addons/ directory

• You MUST NOT instantiate an AddonSettings object yourself

• to_json returns the mako context for the settings pages

• Log templates: the id of each script tag correspond to log actions.

• Don’t forget to do error handling! This includes handling errors that might occur if 3rd party HTTP APIs cause
a failure and any exceptions that a client library might raise

• Any static assets that you put in website/addons/<addon_name>/static/ will be served from /
static/addons/<addon_name>/. This means that <link> and <script> tags should always point
to URLs that begin with /static/.

3.5.2 Installing Add-ons

Open terminal and switch to the folder where your OSF installation is located. We will install the addons to the website
folder. So navigate to

cd website/addons

During your installation you created a virtual environment for OSF. Switch to the environment by typing workon
followed by the name of your virtual environment

If you use virtualenvwrapper
$ workon osf

3.5.3 Bare minimums

• __init__.py declares all views/models/routes/hooks for your add-on

• Your add-on MUST declare the following in its __init__.py

• SHORT_NAME (string)

3.5. Developing An Addon 37

https://tools.ietf.org/html/rfc2119

COS Development, Release 1.0

– The name that will be used to refer to your add-on on the backend

– EX:

* Amazon Simple Storage Service is s3

* Google Drive is googledrive

• FULL_NAME (string)

– The name “display name” of your add-on, whenever the user is interacting with your add-on this is the
name they will see

• ROUTES (list of routes dicts)

– A list containing all routes defined by your add-on

– Maps Urls to views

• MODELS (list of StoredObjects)

– A list of all ODM objects defined by your add-on

– If your model is not in this list it will not be usable

• ADDED_DEFAULT (list of strings)

– A list of AddonMixin models that your add-on SHALL be added to when they are created

– Valid options are user and node

– EX:

– The Wiki addon is added by default for nodes

• ADDED_MANDATORY (list of strings)

– A list of AddonMixin models that your add-on MUST be attached/connected to at all times

– Valid options are user and node

– EX:

– OsfStorage is a required add-on for nodes

• VIEWS (list of strings)

– Additional builtin views for your add-on

– Valid options are page and widget

– EX: The wiki defines both a page view and a widget view

• CATEGORIES (list of strings)

– A list of categories this add-on should be displayed under when the user is “browsing” add-ons

– SHOULD be one of documentation, storage, citations, security, bibliography, and
other

* Additional categories can be added to ADDON_CATEGORIES in website.settings.
defaults

• INCLUDE_JS and INCLUDE_CSS

– Deprecated field, define as empty dict ({})

• OWNERS (list of strings)

– Valid options are user and node

38 Chapter 3. OSF Development

COS Development, Release 1.0

• CONFIGS (list of strings)

– Valid options are accounts and node

3.5.4 Optional Fields

Your add-on MAY define the following fields

• HAS_HGRID_FILES (boolean)

• A boolean that indicated that this add-on’s GET_HGRID_DATA function should be used to populate the files
grid

• GET_HGRID_DATA (function)

• A function that returns HGrid/Treebeard formatted data to be included in a project’s files grid

• USER_SETTINGS_MODEL (StoredObject)

• MUST inherit from website.addons.base.AddonUserSettingsBase

• A model that will be used to store settings for users

• Will be returned when User.get_addon('YourAddon') is called

• EX:

– S3’s User settings is used to store the user’s AWS access keys

• NODE_SETTINGS_MODEL (StoredObject)

• MUST inherit from website.addons.base.AddonNodeSettingsBase

• A model that will be used to store settings for nodes

• Will be returned when Node.get_addon('YourAddon') is called

• NODE_SETTINGS_TEMPLATE (string to directory)

• A mako template for configuring your add-on’s node settings object

• USER_SETTINGS_TEMPLATE (string to directory)

• A mako template for configuring your add-on’s user settings object

• MAX_FILE_SIZE

• This maximum size, in MB, that can be uploaded to your add-on, supposing it supports files

3.5.5 Addon Structure

An add-on SHOULD have the following folder structure

website/addons/addonshortname/
__init__.py
model.py
requirements.txt
routes.py
settings

__init__.py
defaults.py

static
comicon.png
node-cfg.js*

3.5. Developing An Addon 39

http://www.makotemplates.org/
http://www.makotemplates.org/

COS Development, Release 1.0

tests
...

user-cfg.js*
templates

log_templates.mako
addonshortname_node_settings.mako*
addonshortname_user_settings.mako*

tests
__init__.py
test_model.py
test_views.py

views
...

* optional

3.5.6 StoredObject

All models should be defined as subclasses of framework.mongo.StoredObject.

3.5.7 Routes

Routes are defined in a dictionary containing rules and an optional prefix.

Our url templating works the same way that flask’s does.

my_route = {
'rules': [
Rule(

[
'/my/<templated>/path/', # Note all routes SHOULD end with a forward slash (/

→˓)
'/also/my/<templated>/path/'

],
('get', 'post'), # Valid HTTP methods
view.my_view_function, # The view method this route maps to
json_renderer # The renderer used for this view function, either

→˓OsfWebRenderer or json_renderer
)

]
}

Routes SHOULD be defined in website.addons.youraddon.routes but could be defined anywhere

3.5.8 Views

Our views are implemented the same way that flask’s are.

Any value matched by url templating (<value_name>) will be passed to your view function as a keyword argument

Our framework supplies many python decorators to make writing view functions more pleasant.

Below are a few examples that are commonly used in our code base.

More can be found in website.project.decorators.

40 Chapter 3. OSF Development

http://flask.pocoo.org/docs/0.10/views/
http://flask.pocoo.org/docs/0.10/views/

COS Development, Release 1.0

framework.auth.decorators.must_be_logged_in

Ensures that a user is logged in and imputes auth into keyword arguments

website.project.decorators.must_have_addon

must_have_addon is a decorator factory meaning you must supply arguments to it to get a decorator.

@must_have_addon('myaddon', 'user')
def my_view(...):
pass

@must_have_addon('myaddon', 'node')
def my_node_view(...):
pass

The above code snippet will only run the view function if the specified model as the requested addon.

Note: Routes whose views are with decorated must_have_addon('addon_short_name', 'node')
MUST start with /project/<pid>/....

website.project.decorators.must_have_permission

must_have_permission is another decorator factory that takes a permission argument (may be’write’,’read’,
or’admin’).

It prevents the decorated view function from being called unless the user issuing the request has the required permis-
sion.

3.5.9 Logs

Some common log examples

• dropbox_node_authorized

• dropbox_node_authorized

• dropbox_file_added

• dropbox_file_removed

• dropbox_folder_selected, github_repo_linked, etc.

Use the NodeLog class’s named constants when possible,

'dropbox_' + NodeLog.FILE_ADDED

Every log action requires a template in youraddon/templates/log_templates.mako. Each template’s id
corresponds to the name of the log action.

3.5. Developing An Addon 41

COS Development, Release 1.0

3.5.10 Static files for add-ons

Todo: Add detail.

First make sure your add-on’s short name is listed in addons.json.

addons.json

{
"addons": [

...
"dropbox",
...

]
}

This adds the proper entry points for webpack to build your add-on's static files.

The following files in the static folder of your addon directory will be built by webpack:

• user-cfg.js : Executed on the user addon configuration page.

• node-cfg.js : Executed on the node addon configuration page.

• files.js : Executed on the files page of a node.

You do not have to include these files in a ‘‘<script>‘‘ tag in your templates. They will dynamically be included
when your addon is enabled.

3.5.11 Rubeus and the FileBrowser

For an addon to be included in the files view they must first define the following in the addon’s __init__.py:

HAS_HGRID_FILES = True
GET_HGRID_DATA = views.hgrid.{{addon}}_hgrid_data

Has hgrid files is just a flag to attempt to load files from the addon. get hgrid data is a function that will return
FileBrowser formatted data.

Rubeus

Rubeus is a helper module for filebrowser compatible add ons.

rubeus.FOLDER,KIND,FILE are rubeus constants for use when defining filebrowser data.

rubeus.build_addon_root:

Builds the root or “dummy” folder for an addon.

:param AddonNodeSettingsBase node_settings: Addon settings

:param str name: Additional information for the folder title

eg. Repo name for Github or bucket name for S3

:param dict or Auth permissions: Dictionary of permissions for the add-on's content
→˓or Auth for use in node.can_X methods

42 Chapter 3. OSF Development

COS Development, Release 1.0

:param dict urls: Hgrid related urls

:param str extra: Html to be appended to the addon folder name

eg. Branch switcher for github

:param dict kwargs: Any additional information to add to the root folder

:return dict: Hgrid formatted dictionary for the addon root folder

Addons using OAuth and OAuth2

There are utilities for add-ons that use OAuth or Oauth2 for authentication. These include:

• website.oauth.models.ExternalProvider : a helper class for managing and acquiring credentials
(see website.addons.mendeley.model.Mendeley as an example)

• website.oauth.models.ExternalAccount : abstract representation of stored credentials; you do not
need to implement a subclass of this class

• website.addons.base.AddonOAuthUserSettingsBase : abstract interface to access user creden-
tials (see website.addons.mendeley.model.MendeleyUserSettings as an example)

• website.addons.base.AddonOAuthUserSettingsBase : abstract interface for nodes to manage
and access user credentials (see website.addons.mendeley.model.MendeleyNodeSettings as
an example)

• website.addons.base.serializer.AddonSerializer & website.addons.base.
serializer.OAuthAddonSerializer: helper classes to facilitate serializing add-on settings

Deselecting and Deauthorizing

Many add-ons will have both user and node settings. It is important to ensure that, if a user’s add-on settings are
deleted or authorization to that add-on is removed, every node authorized by the user is deauthorized, which includes
resetting all fields including its user settings.

It is necessary to override the delete method for MyAddonUserSettings in order to clear all fields from the
user settings.

class MyAddonUserSettings(AddonUserSettingsBase):

def delete(self):
self.clear()
super(MyAddonUserSettings, self).delete()

def clear(self):
self.addon_id = None
self.access_token= None
for node_settings in self.myaddonnodesettings__authorized:

node_settings.deauthorize(Auth(self.owner))
node_settings.save()

return self

You will also have to override the delete method for MyAddonNodeSettings.

3.5. Developing An Addon 43

COS Development, Release 1.0

class MyAddonNodeSettings(AddonNodeSettingsBase):

def delete(self):
self.deauthorize(Auth(self.user_settings.owner), add_log=False)
super(AddonDataverseNodeSettings, self).delete()

def deauthorize(self, auth, add_log=True):
self.example_field = None
self.user_settings = None

if add_log:
...

3.5.12 IMPORTANT Privacy Considerations

Every add-on will come with its own unique set of privacy considerations. There are a number of ways to make small
errors with a large impact.

General

• Using must_be_contributor_or_public, must_have_addon, etc. is not enough. While you
should make sure that you correctly decorate your views, that does not ensure that non-OSF-related permis-
sions have been handled.

• For file storage add-ons, make sure that contributors can only see the folder that the authorizing user has selected
to share.

• Think carefully about security when writing the node settings view ({{addon}}_node_settings.mako / {{ad-
don}}NodeConfig.js}}. For example, in the GitHub add-on, the user should only be able to see the list of repos
from the authenticating account if the user is the authenticator for the current node. Most add-ons will need to
tell the view (1) whether the current user is the authenticator of the current node and (2) whether the current user
has added an auth token for the current add-on to her OSF account.

Example: When a Dropbox folder is shared on a project, contributors (and the public, if the project is public) should
only perform CRUD operations on files and folders that are within that shared folder. An error should be thrown if a
user tries to access anything outside of that folder.

@must_be_contributor_or_public
@must_have_addon('dropbox', 'node')
def dropbox_view_file(path, node_addon, auth, **kwargs):

"""Web view for the file detail page."""
if not path:

raise HTTPError(http.NOT_FOUND)
check that current user was the one who authorized the Dropbox addon
if not is_authorizer(auth, node_addon):

raise HTTPError(403) if path is a not a subdirectory of the shared folder
abort_if_not_subdir(path, node_addon.folder)

...

Make sure that any view (CRUD, settings views. . .) that accesses resources from a 3rd-party service is secured in this
way.

3.6 Migrations

• Migrations go in the scripts/ directory.

44 Chapter 3. OSF Development

COS Development, Release 1.0

• Use a main() function which runs the migration. Avoid import side-effects.

• When possible, include a function that lists the records that will be affected by the migration. These are useful
in an interactive session for doing dry runs.

def get_targets():
"""Generate the nodes to migrate."""
return (node for node in Node.find(Q('category', 'nin', Node.VALID_CATEGORIES)))

• Use Python’s loggingmodule for logging output. In addition, use scripts.utils.add_file_logger
to add a file handler that will add timestamped log file in website.settings.LOG_PATH.

• Add tests in the scripts/tests directory.

Below is the skeleton of an example migration.

#!/usr/bin/env python
-*- coding: utf-8 -*-
"""Script to migrate nodes with invalid categories."""

import sys
import logging

from website.app import init_app
from scripts import utils as script_utils

logger = logging.getLogger(__name__)

def do_migration(records, dry=True):
... perform the migration ...

def get_targets():
... return the StoredObjects to migrate ...

def main(dry=True):
init_app(set_backends=True, routes=False) # Sets the storage backends on all

→˓models
do_migration(get_targets(), dry=dry)

if __name__ == '__main__':
dry = '--dry' in sys.argv
if not dry:

script_utils.add_file_logger(logger, __file__)
main(dry=dry)

from tests.base import OsfTestCase

class TestMigrateNodeCategories(OsfTestCase):

def test_get_targets(self):
...

def test_do_migration(self):
...

3.6. Migrations 45

COS Development, Release 1.0

3.7 Troubleshooting Common Problems

This document is intended to serve as a knowledge repository - it should contain solutions to commonly encountered
problems when running the OSF, as well as solutions to hard-to-debug issues that developers have encountered that
might be seen by others in the course of their work

3.7.1 “Emails not working on my development server”

Solution: You may not have a celery worker running. If you have Celery and RabbitMQ installed (see the README
for installation instructions), run invoke celery.

Less ideally, you can turn Celery off and send emails synchronously by adding USE_CELERY = False to your
website/settings/local.py file.

3.7.2 “My view test keeps failing”

Solution: You have to reload the database record.

def test_change_name_view(self):
user = UserFactory()
Hit some endpoint that updates the user's database record
res = self.app.post_json('/{}/changename/'.format(user._primary_key),

{'name': 'Freddie Mercurial'})
user.reload() # Make sure object is up to date
assert_equal(res.status_code, 200)

3.7.3 ImportError: No module named five

Celery may raise an exception when attempting to run the OSF tests. A partial traceback:

Exception occurred:
File "<...>", line 49, in <module>
from kombu.five import monotonic

ImportError: No module named five

3.7.4 error: [Errno 61] Connection refused‘ is raised in ampq/transport.py

Solution: You may have to start your Rabbitmq and Celery workers.

$ invoke rabbitmq
$ invoke celery_worker

3.7.5 Error when importing uritemplate

If invoking assets or server commands throw an error about uritemplate, run the following to resolve the conflict:

pip uninstall uritemplate.py --yes
pip install uritemplate.py==0.3.0

and then re run the command that failed.

46 Chapter 3. OSF Development

https://github.com/CenterForOpenScience/osf

COS Development, Release 1.0

3.7.6 Using PyCharm’s Remote Debugger

Some debugging tasks make it difficult to use the standard debug tools (i.e. pdb, ipdb, or PyCharm’s debugger).
Usually this is becuase you’re running code in a way where you don’t have ready access to the process’s standard
in/out. Examples of this include:

• celery tasks

• local testing/debugging using uWSGI

One way to debug code running in these kinds of enviornments is to use the PyCharm remote debugger. Follow
the JetBrains documentation for creating a new run configuration for the remote debugger: https://www.jetbrains.
com/pycharm/help/remote-debugging.html. At some point you may be required to add pycharm-debug.egg to your
system’s PYTHONPATH. The easist way to do this is to modify your ~/.bash_profile to automatically append this
module to the python path. This looks like:

export PYTHONPATH="$PYTHONPATH:<your_path_to>/pycharm-debug.egg"

To apply these changes to the current bash session, simply

source ~/.bash_profile

When you start the remote debug server in PyCharm you will get some console output like:

Use the following code to connect to the debugger:
import pydevd
pydevd.settrace('localhost', port=54735, stdoutToServer=True, stderrToServer=True)

So to use, simple copy paste the bottom two lines wherever you need to run a debugger. In celery tasks for example,
this often means inside a task definition where it would be otherwise impossible to step into the code. Trigger whatever
is needed to queue the celery task, and watch the PyCharm console to see when a new connection is initiated.

Happy remote-debugging.

3.8 Ops

In progress

3.8.1 Common deployment tasks

Generating a new SSL certificate

• Generate a certificate signing request (see instructions from this post)

– goto osf:/opt/certs/namecheap

– openssl genrsa -des3 -out osf.io.key 2048

– openssl rsa -in osf.io.key -out osf.io.key.nopass

– openssl req -new -key osf.io.key.nopass -out osf.io.csr

* fqdn: osf.io

* don’t enter “challenge password”

• Get signed certificate

3.8. Ops 47

https://www.jetbrains.com/pycharm/help/remote-debugging.html
https://www.jetbrains.com/pycharm/help/remote-debugging.html
http://blog.wensheng.org/2012/03/using-namecheap-ssl-with-nginx.html

COS Development, Release 1.0

– submit CSR to NameCheap

– follow verification email

– download and expand zip file of certs

– cat osf_io.crt COMODORSADomainValidationSecureServerCA.crt
COMODORSAAddTrustCA.crt AddTrustExternalCARoot.crt > osf.io.bundle.
crt

• On staging

– copy osf.io.bundle.crt to /opt/certs/namecheap

– edit /opt/nginx/sites-enabled/000-osf

* ssl_certificate /opt/certs/namecheap/osf.io.bundle.crt;

* ssl_certificate_key /opt/certs/namecheap/osf.io.key.nopass;

• On production

– goto linode nodebalancer config

– edit production settings

– paste osf.io.bundle.crt into “Certificate” field

– paste osf.io.key.nopass into “Private Key” field

Upgrading Unsupported releases of Ubuntu

• EOLUpgrades

• How to install software or upgrade from old unsupported release? (AskUbuntu)

NOTE: The command from the AskUbuntu answer needs slight modification to include replacement of us.
archive.ubuntu.com:

sudo sed -i -e 's/archive.ubuntu.com\|security.ubuntu.com\us.archive.ubuntu.com/old-
→˓releases.ubuntu.com/g' /etc/apt/sources.list

NOTE: When prompted if you want to replace /etc/mongodb.conf and /etc/nginx/nginx.conf, etc.,
press X to enter the shell and back these files up (sudo cp /etc/mongodb.conf /etc/mongodb.conf.
bak)

Migrating to a new machine

Todo: This is incomplete. Add final steps and clean this up.

• On Linode dashboard, go to the Linode you want to restore from.

• Go to Backups -> Daily Backups.

• Click “Restore to this Linode” next to the Linode you want to restore to.

• Once restoration is complete, resize the data image.

• On the new machine, add a new SSH key pair.

48 Chapter 3. OSF Development

https://help.ubuntu.com/community/EOLUpgrades/
https://askubuntu.com/questions/91815/how-to-install-software-or-upgrade-from-old-unsupported-release/91821#91821?newreg=55cb4b0054814dbe9fdf36b3a0a08f27

COS Development, Release 1.0

Replace "sloria" with your username
$ ssh-keygen -t rsa -C "sloria-osf"

• Copy the new public key to the old machine at /home/<your-username>/.ssh/authorized_keys

• On the new machine, edit /root/.ssh/config with the correct SSH settings.

Host osf-old
HostName <ip-of-old-linode>
User sloria
IdentityFile /home/sloria/.ssh/id_rsa

• rsync /opt/data/mongodb.

On the new machine
$ sudo rsync -vaz --delete osf-old:/opt/data/mongodb /opt/data

Note: You’ll probably want to use screen or nohup to run this as a background process.

• rsync /opt/data/uploads.

$ sudo rsync -vaz --delete osf-old:/opt/data/uploads /opt/data/

put up osf_down page,private ips on node balancer, restart new server then old

3.9 Running Google Analytics Locally

This section describes how to set up and test Google Web Analytics features locally.

3.9.1 Getting a Google Analytics Account

Open a web browser and navigate to Google Analytics.

Click Access Google Analytics. If you have not used Google Analytics before, you will be prompted to sign up.
Follow the process and confirm your account.

Click Admin on the nav bar.

Click the Property drop down and select Create New Property.

Fill out Website Name and Website URL – they don’t need to point to real URLs. In this example the former will be
osf analytics testing and the latter will be test.osf.io

Once completed, click Get Tracking ID and you will be redirected to a page containing the tracking info you will
need.

Take note of copy the Tracking ID. It should look similar to UA-43352009-1.

3.9.2 Update Your Local local.py

Ensure that you have set up your website/settings/local.py file as outlined in Setting up the OSF .

Add GOOGLE_ANALYTICS_ID = <your_tracking_id> to your website/settings/local.py file.

3.9. Running Google Analytics Locally 49

http://www.google.com/analytics/

COS Development, Release 1.0

Note: Now any events that trigger Google Analytics, currently or new things you implement, will be sent to the
property we set up in the previous section.

3.9.3 Viewing Live Events Within Google Analytics

Click Home on the nav bar.

Note: You will see one, or more if you have previously created properties, folders. The descriptions match the
Website Name of the associated property.

Click on the property you created, osf analytics testing in your example.

Click All Website Data and you will be redirected to an overview page for this property.

On the left hand navigation bar, click Real-Time -> Overview.

(Optional) Follow the ANALYTICS EDUCATION if you are unfamiliar with Google Analytics.

Click Events flag underneath the Real-Time section of the left hand navigation bar.

Note: From here you can view live events (events received within the last 30 minutes) triggered by either you or your
test code from your local environment.

3.10 How to add a preprint provider

3.10.1 Requirements

New preprint providers must have the following:

• A name

• A square logo

• A rectangular/wide logo

• 3 unique colors

• A list of acceptable subjects (taxonomies)

• A list of acceptable licenses

• Emails for:

– Contact (defaults to contact+provider_name@osf.io)

– Support (defaults to support+provider_name@osf.io)

Recommended:

• A Twitter account

• A Facebook Page

• An Instagram account

50 Chapter 3. OSF Development

https://twitter.com/signup
https://www.facebook.com/business/products/pages
https://business.instagram.com/gettingstarted/

COS Development, Release 1.0

3.10.2 Creating a new Preprint Provider

1. Update the Populate Preprint Providers script

2. Format and save images to the in the ember-preprints assets directory

3. Add the config entry

4. Create the stylesheet

osf.io Updates

Create a new feature branch in the osf.io repository git checkout develop && git checkout -b
feature/add-preprint-provider-provider_id

ember-preprints Updates

Create a new feature branch in the ember-preprints repository git checkout develop && git checkout
-b feature/add-preprint-provider-provider_id

Formatting the images

In the ember-preprints repository: public/assets/img/provider_logos. Commit the original images (be-
fore edits) to the repository, but don’t reference the original images in the CSS. SVG images are preferred, but if the
provider does not have those available, use or convert to the PNG format.

You’ll need:

• White foreground with transparent background (Used on the main OSF Preprints landing page, under the
Preprint Services Section)

– width: <= 350px

– height: 140px

• Black foreground with transparent background (Used on the OSF Preprints discover page, under Partner Repos-
itories)

– width: <= 350px

– height: 120px

• Square logo with a transparent background (can have color foreground)

– width: 48px

– height: 48px

• Rectangular/wide logo with a transparent background (can have color foreground, this can be the white fore-
ground image)

– width: <= 600px

– height: 140px

• A sharing logo that will be displayed on social media sites

– width: >= 200px, 1500px preferred

– height: >= 200px, 1500px preferred

3.10. How to add a preprint provider 51

COS Development, Release 1.0

You may need to edit the images to meet the requirements. Use brew cask install gimp to install gimp or
use Pixlr.

Optimitize the images with Optimizilla or a similar service. See the Google Image Optimization Guide

Adding an entry in the config

In config/environment.js, there will be a PREPRINTS object and a providers array. You will need to add
another object to that providers array.

If adding a provider domain, you’ll need to run sudo ./scripts/add-domains.js

{
id: 'provider_id', // This must match the ID in the OSF Repo
domain: 'provider.org', // If using a domain. Otherwise, delete this line
logoSharing: {

path: '/assets/img/provider_logos/provider_id-sharing.png', // The path to
→˓the provider's sharing logo

type: 'image/png', // The mime type of the image
width: 1500, // minimum 200, 1500 preferred (this is the width of the image,

→˓in pixels)
height: 1500 // minimum 200, 1500 preferred (this is the height of the image,

→˓in pixels)
},
permissionLanguage: 'provider_permission_language'

}

Adding permission language to the footer text

The branded preprint partners need to show permissions to use content/titles from the owner institutions/organizations.
For example, engrXiv, SocArXiv, and PsyArXiv are using the -rXiv extension with permission from Cornell and there
is a need to have a language on their pages stating such.

Adding an entry in the translation

In translation.js, there will be a permission-language entry where you will need to add the provider permission
language.

'permission-language': {
arxiv_trademark_license,
arxiv_non_endorsement: `${arxiv_trademark_license} This license should not be

→˓understood to indicate endorsement of content on {{provider}} by Cornell University
→˓or arXiv.`
}

Note that if the permission language is expecting to be used fully or partially by other providers then it is preferable
to be defined as a constant at the beginning of the translation.js file. The const can be later re-used within the
permission-language entry.

const arxiv_trademark_license = 'arXiv is a trademark of Cornell University, used
→˓under license.';

52 Chapter 3. OSF Development

https://pixlr.com/editor/
http://optimizilla.com/
https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/image-optimization

COS Development, Release 1.0

Creating the stylesheet

The basic stylesheet must be named app/styles/brands/provider_id.scss and contain the following:

@import 'brand';

@include brand(
#ABCDEF, // Color, theme color #1 (header

→˓backgrounds, hover backgrounds)
white, // Color, theme color #2 (text color

→˓mostly, usually white or black)
#012345, // Color, theme color #3 (navbar color,

→˓preferably a dark color)
#6789AB, // Color, theme color #4 (used in link

→˓colors)
black, // Color, theme color #5 (text color that

→˓contrasts with #2, usually black or white)
$logo-dir + 'engrxiv-small.png', // String, path to the rectangular

→˓provider logo
$logo-dir + 'engrxiv-square-small.png', // String, path to the square provider

→˓logo
true, // Boolean, whether to use the white

→˓share logo or not
false, // Boolean, whether to use theme color 4

→˓or theme color 2 for the navbar link color
true // Boolean, whether to use the contracts

→˓link color (theme color 4)
);

// Add any custom styles or overrides here

You may need to manipulate the colors and options to get them to look good. Avoid overriding styles, if at all possible.

Open Pull Requests

Open pull requests against osf.io and ember-preprints with your changes. Be sure to cross-reference in the PR descrip-
tion that it requires the other PR. If the PR includes adding a domain, Add a “Notes for Reviewers” section with a
reminder to run the add-domains script. Add notes for QA that include screenshots of the newly added provider

In your PR against osf.io, add a section called “Notes for Deployment” with a reminder to request an API key from
SHARE. This is necessary, because the provider’s preprints will not be indexed by SHARE without the API Key.

3.10.3 CAS Support for Login and Sign Up

Create a ticket in CAS Board with “Login and Sign Up Support: <the name of the preprint provider>” as the summary.
Basic features are guaranteed and extra ones are welcome. Make this ticket block the OSF or EOSF tickets for this
provider.

Basic Features

1. Register the preprint provider to CAS Registered Service.

2. Whitelist the provider’s external domain to OSF Authentication Logic.

3. Customize the login page (CAS) and the sign up page (OSF).

3.10. How to add a preprint provider 53

https://openscience.atlassian.net/secure/RapidBoard.jspa?rapidView=78&useStoredSettings=truewithtitle

COS Development, Release 1.0

Extra Features

Please add other requirements in the description.

Resources To Provide

1. Preferred display name: e.g. PsyArxiv.

2. The default, black and colored logo images (if available).

3. Preferred CSS background color: the main background color of the home page.

4. OSF domain and external domain: e.g. osf.io/preprints/psyarxiv/ and preprints.psyarxiv.
org/

3.10.4 DevOps

If the provider is using a domain, create a DevOps ticket to update the proxy redirects and for them to contact the
domain admin to get the domain pointed at the correct IP address. Include the contact information from the product
team.

54 Chapter 3. OSF Development

CHAPTER 4

Getting Help

4.1 Resources

4.1.1 Flowdock

We use Flowdock for group and 1-and-1 online chat. It’s a great place to ask questions!

55

https://www.flowdock.com/

COS Development, Release 1.0

56 Chapter 4. Getting Help

CHAPTER 5

Contributing To These Docs

5.1 Getting Started

Contributions to this documentation are welcome. Documentation is written in reStructured Text (rST). A quick rST
reference can be found here. Builds are powered by Sphinx and are hosted by ReadTheDocs.

5.1.1 Fork, clone, install

First, fork the COSDev repo, clone it, and install the requirements (requires Python 2.7 or 3.4 with pip):

After forking CenterForOpenScience/COSDev
$ git clone https://github.com/<your_github_username>/COSDev.git
$ cd COSDev
$ pip install -r requirements.txt

Be sure to replace <your_github_username> with your Github username.

5.1.2 Build the docs

To build docs:

$ invoke docs -b

The -b (for “browse”) automatically opens up the docs in your browser after building. Alternatively, you can open up
the docs/_build/index.html file manually.

Autobuilding on File Changes

You can use sphinx-autobuild to automatically build the docs when you change a file in the docs directory.

To install sphinx-autobuild:

57

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/docs/user/rst/quickref.html
http://sphinx.pocoo.org/
http://readthedocs.org
https://github.com/CenterForOpenScience/COSDev

COS Development, Release 1.0

$ pip install sphinx-autobuild

You can now start the livereload server with:

$ invoke watch

Point your browser to http://localhost:8000 to see your docs.

5.1.3 Send a PR!

Once you are done making your edits, send a pull request on Github to the COSDev repo.

5.1.4 Header Conventions

Use the following underlining conventions for heading levels:

• = for h1

• * for h2

• - for h3

• ^ for h4

5.2 Todo List

Below is a list of all the TODO items in this documentation. Please help out and send a pull request!

Todo: Add detail.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cosdev/checkouts/latest/docs/osf/addons.rst,
line 281.)

Todo: Document how to use mako variables in JS modules (contextVars)

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cosdev/checkouts/latest/docs/osf/js_modules.rst,
line 163.)

Todo: This is incomplete. Add final steps and clean this up.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/cosdev/checkouts/latest/docs/osf/ops.rst,
line 56.)

58 Chapter 5. Contributing To These Docs

http://localhost:8000
https://github.com/CenterForOpenScience/COSDev

	Process
	Style Guides
	OSF Development
	Getting Help
	Contributing To These Docs

